
9.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition
1

Page Replacement Algorithms

 MIN, OPT (optimal)
 RANDOM

 evict random page
 FIFO (first-in, first-out)

 give every page equal residency
 LRU (least-recently used)
 MRU (most-recently used)

9.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First-In-First-Out (FIFO) Algorithm
 Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1
 3 frames (3 pages can be in memory at a time per process)

 Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5
 Adding more frames can cause more page faults!

 Belady’s Anomaly
 How to track ages of pages?

 Just use a FIFO queue

15 page faults

9.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FIFO Illustrating Belady’s Anomaly

9.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimal Algorithm

 Replace page that will not be used for longest period of time
 9 is optimal for the example

 How do you know this?
 Can’t read the future

 Used for measuring how well your algorithm performs

9.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Least Recently Used (LRU) Algorithm

 Use past knowledge rather than future
 Replace page that has not been used in the most amount of time
 Associate time of last use with each page

 12 faults – better than FIFO but worse than OPT
 Generally good algorithm and frequently used
 But how to implement?

9.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Algorithm (Cont.)
 Counter implementation

 Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter

 When a page needs to be changed, look at the counters to find
smallest value
 Search through table needed

 Stack implementation
 Keep a stack of page numbers in a double link form:
 Page referenced:

 move it to the top
 requires 6 pointers to be changed

 But each update more expensive
 No search for replacement

 LRU and OPT are cases of stack algorithms that don’t have
Belady’s Anomaly

9.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Use Of A Stack to Record Most Recent Page References

9.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

LRU Approximation Algorithms
 LRU needs special hardware and still slow
 Reference bit

 With each page associate a bit, initially = 0
 When page is referenced bit set to 1
 Replace any with reference bit = 0 (if one exists)

We do not know the order, however
 Second-chance algorithm

 Generally FIFO, plus hardware-provided reference bit
 Clock replacement
 If page to be replaced has

 Reference bit = 0 -> replace it
 reference bit = 1 then:

– set reference bit 0, leave page in memory
– replace next page, subject to same rules

9.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Second-Chance (clock) Page-Replacement Algorithm

9.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Enhanced Second-Chance Algorithm

 Improve algorithm by using reference bit and modify bit (if
available) in concert

 Take ordered pair (reference, modify)
1. (0, 0) neither recently used not modified – best page to replace
2. (0, 1) not recently used but modified – not quite as good, must

write out before replacement
3. (1, 0) recently used but clean – probably will be used again soon
4. (1, 1) recently used and modified – probably will be used again

soon and need to write out before replacement
 When page replacement called for, use the clock scheme but

use the four classes replace page in lowest non-empty class
 Might need to search circular queue several times

9.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Counting Algorithms

 Keep a counter of the number of references that have been made
to each page
 Not common

 Lease Frequently Used (LFU) Algorithm: replaces page with
smallest count

 Most Frequently Used (MFU) Algorithm: based on the argument
that the page with the smallest count was probably just brought in
and has yet to be used

9.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Buffering Algorithms

 Keep a pool of free frames, always
 Then frame available when needed, not found at fault time
 Read page into free frame and select victim to evict and add

to free pool
 When convenient, evict victim

 Possibly, keep free frame contents intact and note what is in them
 If referenced again before reused, no need to load contents

again from disk
 Generally useful to reduce penalty if wrong victim frame

selected

9.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Applications and Page Replacement

 All of these algorithms have OS guessing about future page
access

 Some applications have better knowledge – i.e. databases
 Memory intensive applications can cause double buffering

 OS keeps copy of page in memory as I/O buffer
 Application keeps page in memory for its own work

 Operating system can given direct access to the disk, getting out
of the way of the applications
 Raw disk mode

 Bypasses buffering, locking, etc

9.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Allocation of Frames

 Each process needs minimum number of frames
 Defined by the computer architecture

 Maximum of course is total frames in the system
 Two major allocation schemes

 fixed allocation
 priority allocation

 Many variations

9.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Allocation

 Equal allocation – For example, if there are 100 frames (after
allocating frames for the OS) and 5 processes, give each process
20 frames
 Keep some as free frame buffer pool

 Proportional allocation – Allocate according to the size of process
 Dynamic as degree of multiprogramming, process sizes

change

m
S
spa

m
sS

ps

i
ii

i

ii

 for allocation

frames of number total

 process of size
m 64
s110
s2 127

a1
10
137

 62 4

a2
127
137

 62 57

9.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Allocation

 Use a proportional allocation scheme using priorities rather
than size

 If process Pi generates a page fault,
 select for replacement one of its frames
 select for replacement a frame from a process with lower

priority number

9.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Global vs. Local Allocation

 Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame from
another
 But then process execution time can vary greatly
 But greater throughput so more common

 Local replacement – each process selects from only its own
set of allocated frames
 More consistent per-process performance
 But possibly underutilized memory

9.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing

 If a process does not have “enough” pages, the page-fault rate is
very high
 Page fault to get page
 Replace existing frame
 But quickly need replaced frame back
 This leads to:

 Low CPU utilization
 Operating system thinking that it needs to increase the

degree of multiprogramming
 Another process added to the system

 Thrashing a process is busy swapping pages in and out

9.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Thrashing (Cont.)

9.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Demand Paging and Thrashing

 Why does demand paging work?
Locality model
 A locality is a set of pages actively used together
 Process migrates from one locality to another
 Localities may overlap
 Localities are defined by the program structure and its data

structure

 Why does thrashing occur?
 size of locality > total memory size
 Limit effects by using local or priority page replacement

9.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Locality In A Memory-Reference Pattern

18

20

22

24

26

28

30

32

34

pa
ge

 n
um

be
rs

m
em

or
y

ad
dr

es
s

execution time

9.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working-Set Model
 working-set window a fixed number of page references

Example: 10,000 instructions
 WSSi (working set of Process Pi) =

total number of pages referenced in the most recent (varies in time)
 if too small will not encompass entire locality
 if too large will encompass several localities
 if = will encompass entire program

 D = WSSi total demand frames
 Approximation of locality

 if D > m Thrashing

 Policy if D > m, then suspend or swap out one of the processes

9.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Keeping Track of the Working Set

 Approximate the working-set model with interval timer + a reference bit
 Example: = 10,000

 Timer interrupts after every 5000 time units
 Keep in memory 2 bits for each page
 Whenever a timer interrupts copy and sets the values of all

reference bits to 0
 If one of the bits in memory = 1 page in working set

 Why is this not completely accurate?
 Improvement = 10 bits and interrupt every 1000 time units

9.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Page-Fault Frequency

 More direct approach than WSS
 Establish “acceptable” page-fault frequency (PFF) rate

and use local replacement policy
 If actual rate too low, process loses frame
 If actual rate too high, process gains frame

9.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Working Sets and Page Fault Rates
 Direct relationship between working set of a process and its

page-fault rate
 Working set changes over time
 Peaks and valleys over time

