
13.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File-System Basics

File Concept
Access Methods
Disk and Directory Structure

13.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

To explain the function of file systems
To describe the interfaces to file systems
To discuss file-system design tradeoffs, including access
methods, file sharing, file locking, and directory structures

13.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition 3

Files: OS Abstraction

Files: another OS-provided abstraction over hardware resources

OS Abstraction Hardware Resource

Processes
Threads

CPU

Address space Memory

Files Disk

13.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage-Device Hierarchy

13.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Concept
The file system consists of two distinct parts:

A collection of files, each storing related data
A directory structure, which organizes and provides
information about all the files in the system.

File: Contiguous logical address space, mapped by the OS
onto physical devices.
Types:

Data
 Numeric, character, binary

Program
Contents (many types) is defined by file’s creator

text file,
source file,
executable file

13.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Allocation

Mapping from logical to physical
(assume block size if 512)

Block to be accessed = “starting
address” + Q
Displacement into block = R

LA/512

Q

R

13.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Linked Allocation

13.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indexed Allocation

13.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Attributes
Name – only information kept in human-readable form
Identifier – unique tag (number) identifies file within file system
Type – needed for systems that support different types
Location – pointer to file location on the device (disk)
Size – current file size
Protection – controls who can do reading, writing, executing
Time, date, and user identification – information kept for
creation time, last modification time, and last use time.

Useful for data for protection, security, and usage monitoring
Information kept in the directory structure (on disk), which
consists of “inode” entries for each of the files in the system.

13.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File info Window on Mac OS X

13.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Operations

Create
Write – at write pointer location
Read – at read pointer location
Reposition within file - seek
Delete
Truncate
Open(Fi) – search the directory structure on disk for inode
entry Fi, and move the content of the entry to memory
Close (Fi) – move the content of inode entry Fi in memory to
directory structure on disk.

13.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open Files

Open-file table: Keeps information (inode data) about all
the open files
File pointer : A pointer to last read/write location, per
process that has the file open
File-open count: A counter of the number of times a file is
open – to allow removal of data from open-file table when
last processes closes it
Disk location of the file: Many file operations require the
system to modify data within the file. The information
needed to locate the file on disk is kept in memory so that
the system does not have to read it from disk for each
operation.
Access rights: Per-process access mode information

Several pieces of data are needed to manage open files:

13.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open File Locking

Provided by some operating systems and file systems
Similar to reader-writer locks
Shared lock similar to reader lock – several processes can
acquire concurrently
Exclusive lock similar to writer lock

Mediates access to a file according to the lock state.
Access policy:

Mandatory – access is denied depending on locks held and
requested; OS ensures locking integrity.
Advisory – processes can find status of locks and decide
what to do

13.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Structure

None - sequence of words, bytes
Simple record structure

Lines
Fixed length
Variable length

Complex Structures
Formatted document
Relocatable load file

Who decides:
Operating system
Program

13.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

Information in the file is processed in order, one record
after the other.
General structure

Operations:
read_next () – reads the next portion of the file and
automatically advances a file pointer.
write_next () – append to the end of the file and
advances to the end of the newly written material
(the new end of file).
reset – back to the beginning of the file.

Sequential Access (based on tape model)

13.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

File is made up of fixed-length logical records that allow
programs to read and write records rapidly in no particular
order.
File is viewed as a numbered sequence of blocks or records.
For example, can read block 14, then read block 53, and
then write block 7.
Operations:

read(n) – reads relative block number n.
write(n) – writes relative block number n.

Relative block numbers (to the beginning of the file) allow
OS to decide where file should be placed

Direct Access (based on disk model)

13.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simulation of Sequential Access on Direct-access File

cp is a pointer to the next block to be read/written

13.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Other Access Methods

Can be built on top of the direct-access methods
Generally -- involve creation of an index for the file, containing
pointers to the various blocks.
Keep index in memory for fast determination of location of data
to be operated on
For example, a retail-price file might list the universal product
codes (UPCs) for items, with the associated prices: 10-digit
UPC + 6-digit price = a 16-byte record. If the disk has 1,024
bytes per block, we can store 64 records per block. A file of
120,000 records would occupy about 2,000 blocks (2 million
bytes). By keeping the file sorted by UPC, we can define an
index consisting of the first UPC in each block. This index
would have 2,000 entries of 10 digits each, or 20,000 bytes,
and thus could be kept in memory.
If too large, keep index (in memory) of the main index (on disk)

13.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Typical File System Organization

13.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Structure
The directory can be viewed as a symbol table that translates file
names into their directory
A collection of nodes containing information about all files

F 1 F 2 F 3
F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

Directory entry

13.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations Performed on Directory

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system: access every directory and
every file within a directory structure.

13.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Organization

Efficiency – locating a file quickly
Naming – convenient to users

Two users can have same name for different files
The same file can have several different names

Grouping – logical grouping of files by properties (e.g.,
all Java programs, all games, …)

The directory is organized logically to obtain

13.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single-Level Directory

A single directory for all users

Naming problem: unique name rule is violated
Grouping problem

13.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-Level Directory

Separate directory for each user

Can have the same file name for different user
Efficient searching
User isolation: difficult for file sharing
No grouping capability

13.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories

13.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories (Cont.)

Efficient searching
Users can create their own subdirectories and organize
their files
Every file in the system has a unique path name

Grouping Capability
Current directory (working directory)

cd /spell/mail/prog

type list

13.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Tree-Structured Directories (Cont)

Absolute or relative path name
Creating a new file is done in current directory
Delete a file

rm <file-name>

Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: Suppose the current directory is -- “/mail“
mkdir count

Deleting “mail” deleting the entire subtree rooted by “mail”

13.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories

Have shared subdirectories and files

13.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories (Cont.)

Files/subdirectories have two different names (aliasing)
Only one actual file exists, so any changes made by
one person are immediately visible to the other.

How do we implement shared files and subdirectories?
Can duplicate the inode information about the shared
file/subdirectory in each of the subdirectories that
“point’ to the shared structure.
 If some information changes about the file it had to

be updated in several places.
Have a new directory entry type:
 Link – another name (pointer) to an existing file or

subdirectory.

13.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories -- Links

A link may be implemented as an absolute or a relative
path name.
When a reference to a file is made, the directory is searched.
If the directory entry is marked as a link, then the name of
the real file is included in the link information.
We resolve the link by using that path name to locate the
real file.
Links are easily identified by their format in the directory
entry (or by having a special type on systems that support
types) and are effectively indirect pointers.
The operating system ignores these links when traversing
directory trees to preserve the acyclic structure of the
system.

13.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories -- Deletion

If dict /count is deleted dangling pointer
Solutions:

Backpointers -- so we can delete all pointers.
 Keep a list of all references to the file
 Variable and large size records a problem

Entry-hold-count solution

13.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General Graph Directory

13.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

General Graph Directory (Cont.)

How do we guarantee no cycles?
Allow only links to file not subdirectories
Every time a new link is added use a cycle detection
algorithm to determine whether it is OK

13.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Sample UNIX Directory Listing

Example:

Explanation:
“into.ps” is a file owned by “pbg” with group ”staff”
“lib” is a subdirectory owned by “pbg” with group “faculty”

