
Learning Module II: Real-Time Systems Design

Outline

• Introduction to real-time systems
• Timing requirements and timing analysis

- Concept of Worst-Case Execution Time (WCET)
- Why it is hard for analyzing WCET?
- Overall approach: modularization
- Program path analysis
- Static analysis

• Uniprocessor scheduling algorithms
- Task models
- Performance metrics of scheduling algorithms
- Static scheduling algorithms
- Dynamic scheduling algorithms

• Multicore and distributed real-time systems
- Multiprocessor scheduling
- Distributed real-time systems

• What happens when things go wrong?

Suggested Readings

Books:

Giorgio C. Buttazzo, “Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications”, Springer, Second Edition, 2004. ISBN: 0-387-23137-4

Jane W.S. Liu, “Real-Time Systems,” Prentice Hall, First Edition, 2000. ISBN:0130996513

John A. Stankovic, Marco Spuri, Krithi Ramamritham, Giorgio C Buttazzo, “Deadline Scheduling for Real-
Time Systems: EDF and Related Algorithms”, Springer Science & Business Media, 1998. ISBN 978-1-4615-
5535-3

Papers:

Robert I. Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM
Comput. Surv. 43, 4, Article 35 (October 2011), 44 pages.

Sanjoy K. Baruah, Kirk Pruhs: Open problems in real-time scheduling. J. Scheduling 13(6): 577-582 (2010)

Outline

• Introduction to real-time systems
• Timing requirements and timing analysis

- Concept of Worst-Case Execution Time (WCET)
- Why it is hard for analyzing WCET?
- Overall approach: modularization
- Program path analysis
- Static analysis

• Uniprocessor scheduling algorithms
- Task models
- Performance metrics of scheduling algorithms
- Static scheduling algorithms
- Dynamic scheduling algorithms

• Multicore and distributed real-time systems
- Multiprocessor scheduling
- Distributed real-time systems

• What happens when things go wrong?

INTRODUCTION TO REAL-TIME SYSTEMS

• A real-time system is a system whose specification includes both
logical and temporal correctness requirements.

• Logical correctness (“the results are correct”)
- Requires functional analysis

• Temporal correctness (“the results are delivered in/on time”)
- Requires non-functional analysis

• High reactivity and high dependability are more important than
performance

• In these four lectures, we focus on techniques and technologies for
achieving and checking temporal correctness.

INTRODUCTION TO REAL-TIME SYSTEMS

When we design real-time systems, we need to consider how much system
resources we have to realize the timing requirements of the applications.

The “Window of Scarcity”

Resources may be categorized as:

• Abundant: Virtually any system design methodology can be used to
realize the timing requirements of the application.

• Insufficient: The application is ahead of the technology curve; no design
methodology can be used to realize the timing requirements of the
application.

• Sufficient but scarce: It is possible to realize the timing requirements of
the application, but careful resource allocation is required.

INTRODUCTION TO REAL-TIME SYSTEMS

Scarcity of Resources

Remote
Login

Network File
Access

High-quality
Audio

Interactive
Video

Requirements
(performances, scale, etc.)

Hardware resources in year X

1980 1990 2000 2010

Insufficient resources

Abundant resources

Sufficient but scarce
resources

Interesting Region for Real−Time Systems Design

INTRODUCTION TO REAL-TIME SYSTEMS

• Examples for Real-Time Systems

- Chemical & Nuclear Power Plants
- Railway Switching Systems
- Flight Control Systems
- Space Mission Control
- Automotive Systems
- Healthcare Systems
- Robotics
- Telecommunications Systems
- Stock Market and Trading System
- Multimedia Systems
- Virtual Reality

. . .

Hard Real-Time Systems
Catastrophic results if some deadlines
are missed

Firm Real-Time Systems
The results are useless if the
deadlines are missed

Soft Real-Time Systems
The results are not very useful if the
deadlines are missed

INTRODUCTION TO REAL-TIME SYSTEMS

• Typical Characteristics of Real-Time Systems
- Timeliness

- High cost of failure

- Concurrency/multiprogramming

- Design for worst cases

- Reliability/fault-tolerance requirements

- Predictable behavior

INTRODUCTION TO REAL-TIME SYSTEMS

Frequent Misconceptions about Real-Time Systems

• There is no science in real-time system design.
- We shall see in the following lectures.

• Real-time computing is equivalent to fast computing.
- Real-time computing means predictable and reliable computing.

• “Real-time” is performance engineering/tuning.
- Timeliness is more important than raw performance.

• Advances in hardware will take care of real-time requirements.
- Buying a “faster” processor may result in timeliness violation.

INTRODUCTION TO REAL-TIME SYSTEMS

Frequent Misconceptions about Real-Time Systems (Cont.)

• Real-time programming is assembly coding.
- We would like to automate (as much as possible) real-time systems design

• “Real-time problems” have all been solved in other areas of computer
sciences and operations research.
- OR people typically use stochastic queuing models or one-shot scheduling

models to reason about systems.

- In other CS areas, people are usually interested in optimizing average-case
performance.

• Real-time systems function only in a static environment.
- We also consider systems in which the environment may change dynamically.

The Focus of these four lectures:

• Scheduling Algorithms for Real-Time Systems
- Earliest-Deadline-First Scheduling, Rate Monotonic Scheduling, Deadline

Monotonic Scheduling, etc. in uniprocessor system

- Global scheduling and partitioned scheduling in multiprocessor systems

• Analysis of Timeliness in Real-Time Systems
• Worst-case Execution Time (WECT) analysis

• Schedulability analysis of scheduling algorithms

After these four lectures, you are expected to know

• Fundamental scheduling theories in real-time systems

• Schedulability analysis of scheduling algorithms in real-time systems

INTRODUCTION TO REAL-TIME SYSTEMS

Outline

• Introduction to real-time systems
• Timing requirements and timing analysis

- Concept of Worst-Case Execution Time (WCET)
- Why it is hard for analyzing WCET?
- Overall approach: modularization
- Program path analysis
- Static analysis

• Uniprocessor scheduling algorithms
- Task models
- Performance metrics of scheduling algorithms
- Static scheduling algorithms
- Dynamic scheduling algorithms

• Multicore and distributed real-time systems
- Multiprocessor scheduling
- Distributed real-time systems

• What happens when things go wrong?

IMPORTANT QUESTIONS FOR REAL-TIME SCHEDULING

1. What scheduler is guaranteed to meet all task deadlines for a given
workload?

2. Given a scheduler, how do we know that it will work for a given
workload?

3. Is there an “optimal” scheduler independent of workload?

FUNDAMENTALS

• Algorithm:
- It is the logical procedure to solve a certain problem

- It is informally specified a sequence of elementary steps that an “execution
machine” must follow to solve the problem

- It is not necessarily (and usually not) expressed in a formal programming language

• Program:
- It is the implementation of an algorithm in a programming language

- It can be executed several times with different inputs

• Process/job/task:
- An instance of a program that given a sequence of inputs produces a set of outputs

TIMING PARAMETERS OF A JOB JJ

• Arrival time (aj) or release time (rj) is the time at which the job becomes ready
for execution

• Computation (execution) time (Cj) is the time necessary to the processor for
executing the job without interruption.

• Absolute deadline (dj) is the time at which the job should be completed.

• Relative deadline (Dj) is the time length between the arrival time and the
absolute deadline.

• Start time (sj) is the time at which the job starts its execution.

• Finishing time (fj) is the time at which the job finishes its execution.

• Response time (Rj) is the time length at which the job finishes its execution
after its arrival, which is fj - aj.

SCHEDULING CONCEPTS

• Scheduling Algorithm: determines the order that jobs execute on the
processor

• Jobs may be in one of three states:

• A task that is ready or executing is active:

SCHEDULES FOR A SET OF JOBS {J1, J2, . . . , JN}

• A schedule is an assignment of jobs to the processor, such that each
job is executed until completion.

• A schedule can be defined as an integer step function σ: R -> N,
where σ(t) = j denotes job Jj is executed at time t, and σ(t) = 0 denotes
the system is idle at time t.

• If σ(t) changes its value at some time t, then the processor performs a
context switch at time t.

• Non-preemptive scheduling: there is only one interval with σ(t) = j for
every Jj , where t is covered by the interval.

• Preemptive scheduling: there could be more than one interval with
σ(t) = j.

SCHEDULING CONCEPT: NON-PREEMPTIVE

• Schedule: σ: R -> N function of processor time to jobs

SCHEDULING CONCEPT: PREEMPTIVE

• Schedule: σ: R -> N function of processor time to jobs

FEASIBILITY OF SCHEDULES AND SCHEDULABILITY

• A schedule is feasible if all jobs can be completed according to a set
of specified constraints.

• A set of jobs is schedulable if there exists a feasible schedule for the
set of jobs.

• A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists (under any scheduling algorithm).

SCHEDULING ALGORITHMS

• Preemptive vs. Non-preemptive

• Guarantee-Based vs. Best-Effort

EVALUATING A SCHEDULE

• For a job Jj:

• Lateness Lj: delay of job completion with respect to its deadline.

Lj = fj - dj

• Tardiness Ej: the time that a job stays active after its deadline.

Ej = max{0, Lj}

• Laxity (or Slack Time)(Xj): The maximum time that a job can be
delayed and still meet its deadline.

Xj = dj - aj - Cj

METRICS OF SCHEDULING ALGORITHMS (FOR JOBS)

• Given a set J of n jobs, the common metrics are to minimize:

- Average response time:

- Makespan (total completion time):

- Total weighted response time:

- Maximum latency:

- Number of late jobs: where miss(Jj) = 0 if fj <= dj,
and miss(Jj) = 1 otherwise.

AN EXAMPLE: SHORTEST-JOB-FIRST (SJF)

• At any moment, the system executes the job with the shortest remaining
time among the jobs in the ready queue.

AN EXAMPLE: EARLIEST-DEADLINE-FIRST (EDF)

• At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

RECURRENT TASK MODELS

• When jobs (usually with the same computation requirement) are released
recurrently, they can be modeled by a recurrent task

• Periodic Task ti:
- A job is released exactly and periodically by a period Ti

- A phase φi indicates when the first job is released
- A relative deadline Di for each job from task ti
- (φi, Ci , Ti, Di) is the specification of periodic task ti, where Ci is the worst-case

execution time.

• Sporadic Task ti:
- Ti is the minimal time between any two consecutive job releases
- A relative deadline Di for each job from task ti
- (Ci, Ti, Di) is the specification of sporadic task ti , where Ci is the worst-case

execution time.

• Aperiodic Task: Identical jobs released arbitrarily.

EXAMPLES OF RECURRENT TASK MODELS

EVALUATING A SCHEDULE FOR TASKS

• For a job Jj:
- Lateness Lj: delay of job completion with respect to its deadline.

Lj = fj - dj

- Tardiness Ej: the time that a job stays active after its deadline.

Ej = max{0, Lj}

- Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.

Xj = dj - aj – Cj

• For a task tj:
- Lateness Li: maximum lateness of jobs released by task ti
- Tardiness Ei: maximum tardiness of jobs released by task ti
- Laxity Xi: Di - Ci;

RELATIVE DEADLINE <=> PERIOD

• For a task set, we say that the task set is with
- implicit deadline when the relative deadline Di is equal to the period Ti , i.e., Di

= Ti, for every task ti,

- constrained deadline when the relative deadline Di is no more than the period
Ti, i.e., Di <= Ti, for every task ti, or

- arbitrary deadline when the relative deadline Di could be larger than the
period Ti for some task ti.

SOME DEFINITIONS FOR PERIODIC TASKS

• The jobs of task ti are denoted Ji,1, Ji,2,

• Synchronous system: Each task has a phase of 0.

• Asynchronous system: Phases are arbitrary.

• Hyperperiod: Least common multiple (LCM) of Ti.

• Task utilization of task ti : ui = Ci / Ti.

• System utilization: .

FEASIBILITY AND SCHEDULABILITY FOR RECURRENT TASKS

• A schedule is feasible if all the jobs of all tasks can be completed
according to a set of specified constraints.

• A set of tasks is schedulable if there exists a feasible schedule for the
set of tasks.

• A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists (under any scheduling algorithm).

MONOTONICITY OF SCHEDULING ALGORITHMS

• A good scheduling algorithm should be monotonic

• If a scheduling algorithm derives a feasible solution, it should also
guarantee the feasibility with
- less execution time of a task/job,

- less number of tasks/jobs, or

- more number of processors/machines.

SCHEDULABILITY ANALYSIS

• Schedulability for Static-Priority Scheduling
- Utilization-Based Analysis (Relative Deadline = Period)

- Demand-Based Analysis

• Schedulability for Dynamic-Priority Scheduling

STATIC-PRIORITY SCHEDULING

• Different jobs of a task are assigned the same priority.
- πi is the priority of task ti.
- HPi is the subset of tasks with higher priority than ti.
- Note: we will assume that no two tasks have the same priority.

• We will implicitly index tasks in decreasing priority order, i.e., ti has higher
priority than tk if i < k.

• Which strategy is better or the best?
- largest execution time first?
- shortest job first?
- least-utilization first?
- most importance first?
- least period first?

RATE-MONOTONIC (RM) SCHEDULING

• Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily.

• Example Schedule: t1 = (1, 6, 6), t2 = (2, 8, 8), t3 = (4, 12, 12). [(Ci, Ti, Di)]

DEADLINE-MONOTONIC (DM) SCHEDULING

• Priority Definition: A task with a smaller relative deadline has higher
priority, in which ties are broken arbitrarily.

• Example Schedule: t1 = (2, 8, 4), t2 = (1, 6, 6), t3 = (4, 12, 12). [(Ci, Ti, Di)]

OPTIMALITY (OR NOT) OF RM AND DM

• Example Schedule: t1 = (2, 4, 4), t2 = (5, 10, 10)

• The above system is schedulable.

• No static-priority scheme is optimal for scheduling periodic tasks:
However, a deadline will be missed, regardless of how we choose to
(statically) prioritize t1 and t2.

• Corollary: Neither RM nor DM is optimal

OPTIMALITY AMONG STATIC-PRIORITY ALGORITHMS

• Theorem: A system of T independent, preemptable, synchronous
periodic tasks that have relative deadlines equal to their respective
periods can be feasibly scheduled on one processor according to the
RM algorithm whenever it can be feasibly scheduled according to any
static priority algorithm.

• Note: When Di <= Ti for all tasks, DM can be shown to be an optimal
static-priority algorithm using similar argument. Proof left as an exercise.

UTILIZATION-BASED SCHEDULABILITY TEST

• Task utilization:

• System (total) utilization:

• A task system T fully utilizes the processor under scheduling algorithm
A if any increase in execution time (of any task) causes A to miss a
deadline. In this case, U(T) is a upper bound on utilization for A,
denoted Uub(T, A).

• Ulub(A) is the least upper bound for algorithm A:

WHAT IS ULUB(A) FOR?

LIU AND LAYLAND BOUND

• Theorem: [Liu and Layland] A set of n independent, preemptable
periodic tasks with relative deadlines equal to their respective periods
can be scheduled on a processor according to the RM algorithm if its
total utilization U is at most n(21/n - 1). In other words, Ulub(RM, n) =
n(21/n - 1) >= 0.693.

SCHEDULABILITY ANALYSIS

• Schedulability for Static-Priority Scheduling
- Utilization-Based Analysis (Relative Deadline = Period)

- Demand-Based Analysis

• Schedulability for Dynamic-Priority Scheduling

UTILIZATION-BASED TEST FOR EDF SCHEDULING

• Theorem: A task set T of independent, preemptable, periodic tasks
with relative deadlines equal to their periods can be feasibly
scheduled (under EDF) on one processor if and only if its total
utilization U is at most one.

RELATIVE DEADLINES LESS THAN PERIODS

• Theorem: A task set T of independent, preemptable, periodic tasks
with relative deadlines equal to or less than their periods can be
feasibly scheduled (under EDF) on one processor if:

• Note: This theorem only gives sufficient condition.

COMPARISON BETWEEN RM AND EDF (IMPLICIT DEADLINES)

RM
• Low run-time overhead: O(1)

with priority sorting in advance

• Optimal for static-priority

• Schedulability test is NP-hard
(even if the relative deadline =
period)

• Least upper bound: 0.693

• In general, more preemption

EDF
• High run-time overhead: O(log

n) with balanced binary tree

• Optimal for dynamic-priority

• Schedulability test is easy
(when the relative deadline =
period)

• Least upper bound: 1

• In general, less preemption

