
1.1 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Midterm Exam Review

1.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Computer System Structure

 Computer system can be divided into four components:

 Hardware – provides basic computing resources

 CPU, memory, I/O devices

 Operating system

 Controls and coordinates use of hardware among various
applications and users

 Application programs – define the ways in which the system
resources are used to solve the computing problems of the
users

Word processors, compilers, web browsers, database
systems, video games

 Users

 People, machines, other computers

1.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Four Components of a Computer System

1.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and
fair resource use

 OS is a control program

 Controls execution of programs to prevent errors and
improper use of the computer

1.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common bus
providing access to shared memory

 Concurrent execution of CPUs and devices competing for memory
cycles. A memory controller synchronizes access to the memory.

1.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

 Caching – copying information into faster storage system;
main memory can be viewed as a cache for secondary
storage

 Device Driver for each device controller to manage I/O

 Provides uniform interface between controller and
kernel

1.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage-Device Hierarchy

1.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Caching

 Important principle, performed at many levels in a computer
(in hardware, operating system, software)

 Information in use copied from slower to faster storage
temporarily

 Faster storage (cache) checked first to determine if
information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

1.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

 Multiprogramming (Batch system) needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one
to execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling
 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating
interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory process

 If several jobs ready to run at the same time CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

 Virtual memory allows execution of processes not completely in memory

1.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating-System Operations (cont.)

 Dual-mode operation allows OS to protect itself and other system
components

 User mode and kernel mode

 Mode bit provided by hardware (e.g., CS register in CPU)

 Provides ability to distinguish when system is running user code or
kernel code

 Some instructions designated as privileged, only executable in kernel
mode

 System call changes mode to kernel, return from call resets it to user

1.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services

 Operating systems provide an environment for execution of programs
and services to programs and users

 One set of operating-system services provides functions that are
helpful to the user:

 User interface - Almost all operating systems have a user
interface (UI).

 Varies between Command-Line (CLI), Graphics User
Interface (GUI), Batch

 Program execution - The system must be able to load a
program into memory and to run that program, end execution,
either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may
involve a file or an I/O device

1.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

 One set of operating-system services provides functions that are helpful to
the user (Cont.):

 File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

 Communications – Processes may exchange information, on the same
computer or between computers over a network

 Communications may be via shared memory or through message
passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

 May occur in the CPU and memory hardware, in I/O devices, in user
program

 For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

 Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

1.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Services (Cont.)

 Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

 Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file storage,
I/O devices.

 Accounting - To keep track of which users use how much and what
kinds of computer resources

 Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with each
other

 Protection involves ensuring that all access to system resources is
controlled

 Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

1.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A View of Operating System Services

1.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

 Three most common APIs are Windows API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

1.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to
these numbers

 The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

 The caller need know nothing about how the system call is
implemented

 Just needs to obey API and understand what OS will do as a
result call

 Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built
into libraries included with compiler)

1.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

API – System Call – OS Relationship

1.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation

 Design and Implementation of OS not “solvable”, but some
approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start the design by defining goals and specifications

 Highest level: affected by choice of hardware, type of system

 The requirements can be divided into User and System goals

 User goals – operating system should be convenient to use,
easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

1.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Design and Implementation (Cont.)

 Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide
what will be done

 The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example – timer)

 Specifying and designing an OS is highly creative task of
software engineering

1.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operating System Structure

 General-purpose OS is very large program

 Various ways to structure ones

 Simple structure – MS-DOS

 More complex -- UNIX

 Layered – an abstrcation

 Microkernel -Mach

1.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor
registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

1.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

1.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

1.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process

(also called task control block)

 Process state – running, waiting, etc

 Program counter – location of
instruction to next execute

 CPU registers – contents of all process-
centric registers

 CPU scheduling information- priorities,
scheduling queue pointers

 Memory-management information –
memory allocated to the process

 Accounting information – CPU used,
clock time elapsed since start, time
limits

 I/O status information – I/O devices
allocated to process, list of open files

1.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

1.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for
next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

1.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

1.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

1.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked frequently (milliseconds) (must be
fast)

 Long-term scheduler (or job scheduler) – selects which processes should
be brought into the ready queue

 Long-term scheduler is invoked infrequently (seconds, minutes)
(may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations,
many short CPU bursts

 CPU-bound process – spends more time doing computations; few very
long CPU bursts

 Long-term scheduler strives for good process mix

1.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:

 process creation,

 process termination,

 and so on as detailed next

1.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing options

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution options

 Parent and children execute concurrently

 Parent waits until children terminate

1.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space

 Child duplicate of parent (has the same program as the
parent)

 Child has a program loaded into it

 UNIX examples

 fork() system call creates new process. The new process
consists of a copy of the address space of the original
process.

 exec() system call used after a fork() to replace the
process’ memory space with a new program

move itself off the ready queue until the termination of the child

1.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

The only difference is
that the value of pid for
the child process is
zero, while that for the
parent is the actual pid
of the child process.

1.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.

 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

1.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,
including sharing data

 Reasons for cooperating processes:

 Information sharing (shared files)

 Computation speedup (parallel subtasks)

 Modularity (system function divided into separate processes)

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

1.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

1.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Race Condition

 counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

 counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

 Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

1.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}

 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this
problem

 Each process must ask permission to enter critical section in
entry section, may follow critical section with exit section,
then remainder section

1.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Critical Section

 General structure of process Pi

1.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the n
processes

1.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Peterson’s Solution

 Good algorithmic description of solving the problem

 Two process solution

 Assume that the load and store machine-language
instructions are atomic; that is, cannot be interrupted

 The two processes share two variables:
 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

1.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Algorithm for Process Pi

do {

flag[i] = true;

turn = j;

while (flag[j] && turn = = j);

critical section

flag[i] = false;

remainder section

} while (true);

1.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 All solutions below based on idea of locking

 Protecting critical regions via locks

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptible

 Either test memory word and set value

 Or swap contents of two memory words

1.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = TRUE;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to “TRUE”.

1.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

compare_and_swap Instruction

Definition:
int compare_and_swap(int *value, int expected, int new_value) {

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter “value”

3. Set the variable “value” the value of the passed parameter “new_value”
but only if “value” ==“expected”. That is, the swap takes place only under
this condition.

1.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock

 Protect a critical section by first acquire() a lock then
release() the lock

 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic

 Usually implemented via hardware atomic instructions

 But this solution requires busy waiting

 This lock therefore called a spinlock

1.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

acquire() and release()

 acquire() {
while (!available)

; /* busy wait */

available = false;

}

 release() {

available = true;

}

 do {

acquire lock

critical section

release lock

remainder section

} while (true);

1.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)
for process to synchronize their activities.

 Semaphore S – integer variable

 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()

 Originally called P() and V()

 Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

 Definition of the signal() operation

signal(S) {

S++;

}

1.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted
domain

 Binary semaphore – integer value can range only between 0 and 1

 Same as a mutex lock

 Can solve various synchronization problems

 Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

 Can implement a counting semaphore S as a binary semaphore

1.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

 Starvation – indefinite blocking
 A process may never be removed from the semaphore queue in which it is

suspended

 Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process
 Solved via priority-inheritance protocol

1.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

1.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 n buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value n

1.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

do {

...
/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...
/* add next produced to the buffer */

...

signal(mutex);

signal(full);

} while (true);

1.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

Do {

wait(full);

wait(mutex);

...
/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...
/* consume the item in next consumed */

...
} while (true);

1.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and write

 Problem – allow multiple readers to read at the same time

 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered – all
involve some form of priorities

 Shared Data

 Data set

 Semaphore rw_mutex initialized to 1

 Semaphore mutex initialized to 1

 Integer read_count initialized to 0

1.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

do {
wait(rw_mutex);

...
/* writing is performed */

...

signal(rw_mutex);

} while (true);

1.57 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a reader process
do {

wait(mutex);
read_count++;
if (read_count == 1)

wait(rw_mutex);

signal(mutex);

...
/* reading is performed */

...

wait(mutex);
read count--;
if (read_count == 0)

signal(rw_mutex);

signal(mutex);

} while (true);

1.58 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Philosophers spend their lives alternating thinking and eating

 Don’t interact with their neighbors, occasionally try to pick up 2
chopsticks (one at a time) to eat from bowl

 Need both to eat, then release both when done

 In the case of 5 philosophers

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

1.59 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm

 The structure of Philosopher i:
do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

 What is the problem with this algorithm?

1.60 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dining-Philosophers Problem Algorithm (Cont.)

 Deadlock handling

 Allow at most 4 philosophers to be sitting
simultaneously at the table.

 Allow a philosopher to pick up the forks only if both
are available (picking must be done in a critical
section.

 Use an asymmetric solution -- an odd-numbered
philosopher picks up first the left chopstick and then
the right chopstick. Even-numbered philosopher picks
up first the right chopstick and then the left chopstick.

1.61 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time
 But not powerful enough to model some synchronization schemes

monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

procedure Pn (…) {……}

Initialization code (…) { … }
}

}

1.62 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Condition Variables

 condition x, y;

 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is
suspended until x.signal()

 x.signal() – resumes one of processes (if any) that
invoked x.wait()

 If no x.wait() on the variable, then it has no effect on
the variable

1.63 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor with Condition Variables

1.64 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

1.65 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;
}

}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

1.66 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

 Each philosopher i invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

EAT

DiningPhilosophers.putdown(i);

 No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

1.67 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduling - Basic Concepts

 Maximum CPU utilization
obtained with multiprogramming

 CPU–I/O Burst Cycle – Process
execution consists of a cycle of
CPU execution and I/O wait

 CPU burst followed by I/O burst

 CPU burst distribution is of main
concern

1.68 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Scheduler

 Short-term scheduler selects from among the processes in
ready queue, and allocates the CPU to one of them

 Queue may be ordered in various ways

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

 Scheduling under 1 and 4 is nonpreemptive

 All other scheduling is preemptive

1.69 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dispatcher

 Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to
restart that program

 Dispatch latency – time it takes for the dispatcher to stop
one process and start another running

1.70 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per
time unit

 Turnaround time – amount of time to execute a particular
process

 Waiting time – amount of time a process has been waiting in the
ready queue

 Response time – amount of time it takes from when a request
was submitted until the first response is produced, not output (for
time-sharing environment)

1.71 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Scheduling Algorithm Optimization Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

1.72 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

 Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

 Waiting time for P1 = 0; P2 = 24; P3 = 27

 Average waiting time: (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027

1.73 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

 Use these lengths to schedule the process with the shortest
time

 SJF is optimal – gives minimum average waiting time for a given
set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user

1.74 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Determining Length of Next CPU Burst

 Can only estimate the length – should be similar to the previous one

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using
exponential averaging

 Commonly, α set to ½

 Preemptive version called shortest-remaining-time-first

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.

 1n

th
n nt

 .1 1 nnn t

1.75 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority
(smallest integer highest priority)

 Preemptive

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted
next CPU burst time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the
process

1.76 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large FIFO

 q small q must be large with respect to context switch,
otherwise overhead is too high

1.77 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

 20% to background in FCFS

1.78 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be
implemented this way

 Multilevel-feedback-queue scheduler defined by the following
parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter
when that process needs service

1.79 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:
 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling
 A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8
milliseconds

 If it does not finish in 8
milliseconds, job is moved to
queue Q1

 At Q1 job is again served FCFS and
receives 16 additional milliseconds

 If it still does not complete, it is
preempted and moved to queue Q2

