
1

Deadlock

 Definition
 Motivation
 Conditions for deadlocks
 Deadlock prevention & detection

2

Deadlocks

 Deadlock = condition where multiple
threads/processes wait on each other

process A

printer->wait();
disk->wait();
do stuffs …

disk->signal();
printer->signal();

process B

disk->wait();
printer->wait();
do stuffs …
printer->signal();
disk->signal();

Binary semaphore: printer, disk. Both initialized to be 1.

3

Deadlocks - Terminology

 Deadlock:
 Can occur when several processes compete for finite

number of resources simultaneously
 Deadlock prevention algorithms:

 Check resource requests & availability
 Deadlock detection:

 Finds instances of deadlock when processes stop
making progress

 Tries to recover

 Note: Deadlock ≠ Starvation

4

When Deadlock Occurs
All of below must hold:
1. Mutual exclusion:

 An instance of resource used by one process at a time
2. Hold and wait

 One process holds resource while waiting for another;
other process holds that resource

3. No preemption
 Process can only release resource voluntarily
 No other process or OS can force thread to release

resource
4. Circular wait

 Set of processes {t1, …, tn}: ti waits on ti+1, tn waits on
t1

5

Deadlock: Example

 If no way to free resources (preemption), deadlock

6

Deadlock Detection:
Resource Allocation Graph

 Define graph with vertices:
 Resources = {r1, …, rm}
 Processes/threads = {t1, …, tn}

 Request edge from process to resource
ti → rj
 Process requested resource but not

acquired it
 Assignment edge from resource to process

rj → ti
 OS has allocated resource to process

 Deadlock detection
 No cycles → no deadlock
 Cycle → might be deadlock

7

Resource Allocation Graph:
Example

 Deadlock or not?

 Request edge from process
to resource ti → rj

 Process requested
resource but not
acquired it

 Assignment edge from
resource to process rj → ti

 OS has allocated
resource to process

8

Deadlock Detection:
Multiple Instances of Resource

 What if there are multiple instances of a
resource?
 Cycle → deadlock might exist
 If any instance held by process outside cycle,

progress is possible when process releases
resource

9

Deadlock Detection

 Deadlock or not?

10

Resource Allocation Graph:
Example

 Draw a graph for the following event:

 Request edge from process to
resource ti → rj

 Process: requested
resource but not acquired
it

 Assignment edge from
resource to process rj → ti

 OS has allocated resource
to process

Each car going straight

11

Resource Allocation Graph :
Example

 Draw a graph for the following event:

12

Detecting & Recovering from
Deadlock

 Single instance of resource
 Scan resource allocation graph for cycles &

break them!
 Detecting cycles takes O(n2) time

 DFS with back edge
 n = |T| + |R|

 When to detect:
 When request cannot be satisfied
 On regular schedule, e.g. every hour
 When CPU utilization drops below threshold

13

Detecting & Recovering from
Deadlock (cont’d)

 How to recover? - break cycles:
 Kill all processes in cycle
 Kill processes one at a time

 Force each to give up resources
 Preempt resources one at a time

 Roll back thread state to before acquiring resource
 Common in database transactions

 Multiple instances of resource
 No cycle → no deadlock
 Otherwise, check whether processes can proceed

14

Deadlock Prevention

 Ensure at least one of necessary conditions
doesn’t hold
 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

15

Deadlock Prevention
 Mutual exclusion:

 Make resources shareable (but not all
resources can be shared)

 Hold and wait
 Guarantee that process cannot hold one

resource when it requests another
 Make processes request all resources they

need at once and release all before requesting
new set

16

Deadlock Prevention, continued
 No preemption

 If process requests resource that cannot be
immediately allocated to it
 OS preempts (releases) all resources the process

currently holds

 When all resources available:
 OS restarts the process

 Problem: not all resources can be preempted

17

Deadlock Prevention, continued
 Circular wait

 Impose ordering (numbering) on resources
and request them in order

18

Deadlock Prevention
with Resource Reservation

 With future knowledge, we can prevent
deadlocks:
 Processes provide advance information about

maximum resources they may need during
execution

 Resource-allocation state:
 Number of available & allocated resources,

maximum demand of each process

19

Deadlock Prevention
with Resource Reservation (cont’d)
 Main idea: grant resource to process if new state is safe

 Define sequence of processes {t1, …, tn} as safe:
 For each ti, the resources that ti can still request can be

satisfied by currently available resources plus resources
held by all tj, j < i

 Safe state = state in which there is safe sequence
containing all processes

 If new state unsafe:
 Process waits, even if resource available

Guarantees no circular-wait condition

20

Resource Reservation Example 1

 Processes t1, t2, and t3

 Competing for 12 tape
drives

 Currently 11 drives allocated
 Question: is current state safe?

 t1 can complete with current
allocation

 t2 can complete with current
resources, + t1’s resources &
unallocated tape drive

 t3 can complete with current
resources, + t1’s and t2’s, &
unallocated tape drive Yes: there exists safe

sequence {t1, t2, t3} where
all processes may obtain
maximum number of
resources without waiting

21

Resource Reservation Example II

 If t1 requests one more drive:
 Should OS grant it?

22

Resource Reservation Example III

 If t3 requests one more drive:
 Must wait because allocating drive would lead

to unsafe state: 0 available drives, but each
thread might need at least one more drive

23

Single-Instance Resources: Deadlock
Avoidance via Claim Edges

 Add claim edges:
 Edge from process to resource that may be

requested in future

24

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

 To determine whether to
satisfy a request:
 convert claim edge to

allocation edge
 No cycle: grant request
 Cycle: unsafe state; Deny

allocation, convert claim edge
to request edge, block process

25

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

resource-allocation graph at time T
Q1: suppose t3 requests r2 at time T1 (T1>T),

should OS grant it?

26

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

resource-allocation graph at time T
Q2: suppose t4 requests r2 at time T1 (T1>T),

should OS grant it??

Banker’s Algorithm

 Multiple instances
 Each process must a priori claim maximum use
 When a process requests a resource it may have to wait
 When a process gets all its resources it must return

them in a finite amount of time

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi  Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti  Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state
as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe  the resources are allocated to Pi

 If unsafe  Pi must wait, and the old resource-allocation state
is restored

Example of Banker’s Algorithm
 5 processes P0 through P4;

3 resource types:
A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
 The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example: P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true
Allocation Need Available

A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?
 Can request for (0,2,0) by P0 be granted?

