
1

Deadlock

 Definition
 Motivation
 Conditions for deadlocks
 Deadlock prevention & detection

2

Deadlocks

 Deadlock = condition where multiple
threads/processes wait on each other

process A

printer->wait();
disk->wait();
do stuffs …

disk->signal();
printer->signal();

process B

disk->wait();
printer->wait();
do stuffs …
printer->signal();
disk->signal();

Binary semaphore: printer, disk. Both initialized to be 1.

3

Deadlocks - Terminology

 Deadlock:
 Can occur when several processes compete for finite

number of resources simultaneously
 Deadlock prevention algorithms:

 Check resource requests & availability
 Deadlock detection:

 Finds instances of deadlock when processes stop
making progress

 Tries to recover

 Note: Deadlock ≠ Starvation

4

When Deadlock Occurs
All of below must hold:
1. Mutual exclusion:

 An instance of resource used by one process at a time
2. Hold and wait

 One process holds resource while waiting for another;
other process holds that resource

3. No preemption
 Process can only release resource voluntarily
 No other process or OS can force thread to release

resource
4. Circular wait

 Set of processes {t1, …, tn}: ti waits on ti+1, tn waits on
t1

5

Deadlock: Example

 If no way to free resources (preemption), deadlock

6

Deadlock Detection:
Resource Allocation Graph

 Define graph with vertices:
 Resources = {r1, …, rm}
 Processes/threads = {t1, …, tn}

 Request edge from process to resource
ti → rj
 Process requested resource but not

acquired it
 Assignment edge from resource to process

rj → ti
 OS has allocated resource to process

 Deadlock detection
 No cycles → no deadlock
 Cycle → might be deadlock

7

Resource Allocation Graph:
Example

 Deadlock or not?

 Request edge from process
to resource ti → rj

 Process requested
resource but not
acquired it

 Assignment edge from
resource to process rj → ti

 OS has allocated
resource to process

8

Deadlock Detection:
Multiple Instances of Resource

 What if there are multiple instances of a
resource?
 Cycle → deadlock might exist
 If any instance held by process outside cycle,

progress is possible when process releases
resource

9

Deadlock Detection

 Deadlock or not?

10

Resource Allocation Graph:
Example

 Draw a graph for the following event:

 Request edge from process to
resource ti → rj

 Process: requested
resource but not acquired
it

 Assignment edge from
resource to process rj → ti

 OS has allocated resource
to process

Each car going straight

11

Resource Allocation Graph :
Example

 Draw a graph for the following event:

12

Detecting & Recovering from
Deadlock

 Single instance of resource
 Scan resource allocation graph for cycles &

break them!
 Detecting cycles takes O(n2) time

 DFS with back edge
 n = |T| + |R|

 When to detect:
 When request cannot be satisfied
 On regular schedule, e.g. every hour
 When CPU utilization drops below threshold

13

Detecting & Recovering from
Deadlock (cont’d)

 How to recover? - break cycles:
 Kill all processes in cycle
 Kill processes one at a time

 Force each to give up resources
 Preempt resources one at a time

 Roll back thread state to before acquiring resource
 Common in database transactions

 Multiple instances of resource
 No cycle → no deadlock
 Otherwise, check whether processes can proceed

14

Deadlock Prevention

 Ensure at least one of necessary conditions
doesn’t hold
 Mutual exclusion

 Hold and wait

 No preemption

 Circular wait

15

Deadlock Prevention
 Mutual exclusion:

 Make resources shareable (but not all
resources can be shared)

 Hold and wait
 Guarantee that process cannot hold one

resource when it requests another
 Make processes request all resources they

need at once and release all before requesting
new set

16

Deadlock Prevention, continued
 No preemption

 If process requests resource that cannot be
immediately allocated to it
 OS preempts (releases) all resources the process

currently holds

 When all resources available:
 OS restarts the process

 Problem: not all resources can be preempted

17

Deadlock Prevention, continued
 Circular wait

 Impose ordering (numbering) on resources
and request them in order

18

Deadlock Prevention
with Resource Reservation

 With future knowledge, we can prevent
deadlocks:
 Processes provide advance information about

maximum resources they may need during
execution

 Resource-allocation state:
 Number of available & allocated resources,

maximum demand of each process

19

Deadlock Prevention
with Resource Reservation (cont’d)
 Main idea: grant resource to process if new state is safe

 Define sequence of processes {t1, …, tn} as safe:
 For each ti, the resources that ti can still request can be

satisfied by currently available resources plus resources
held by all tj, j < i

 Safe state = state in which there is safe sequence
containing all processes

 If new state unsafe:
 Process waits, even if resource available

Guarantees no circular-wait condition

20

Resource Reservation Example 1

 Processes t1, t2, and t3

 Competing for 12 tape
drives

 Currently 11 drives allocated
 Question: is current state safe?

 t1 can complete with current
allocation

 t2 can complete with current
resources, + t1’s resources &
unallocated tape drive

 t3 can complete with current
resources, + t1’s and t2’s, &
unallocated tape drive Yes: there exists safe

sequence {t1, t2, t3} where
all processes may obtain
maximum number of
resources without waiting

21

Resource Reservation Example II

 If t1 requests one more drive:
 Should OS grant it?

22

Resource Reservation Example III

 If t3 requests one more drive:
 Must wait because allocating drive would lead

to unsafe state: 0 available drives, but each
thread might need at least one more drive

23

Single-Instance Resources: Deadlock
Avoidance via Claim Edges

 Add claim edges:
 Edge from process to resource that may be

requested in future

24

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

 To determine whether to
satisfy a request:
 convert claim edge to

allocation edge
 No cycle: grant request
 Cycle: unsafe state; Deny

allocation, convert claim edge
to request edge, block process

25

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

resource-allocation graph at time T
Q1: suppose t3 requests r2 at time T1 (T1>T),

should OS grant it?

26

Single-Instance Resources: Deadlock
Avoidance via Claim Edges (cont’d)

resource-allocation graph at time T
Q2: suppose t4 requests r2 at time T1 (T1>T),

should OS grant it??

Banker’s Algorithm

 Multiple instances
 Each process must a priori claim maximum use
 When a process requests a resource it may have to wait
 When a process gets all its resources it must return

them in a finite amount of time

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k
instances of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state
as follows:

Available = Available – Requesti;
Allocationi = Allocationi + Requesti;
Needi = Needi – Requesti;

 If safe the resources are allocated to Pi

 If unsafe Pi must wait, and the old resource-allocation state
is restored

Example of Banker’s Algorithm
 5 processes P0 through P4;

3 resource types:
A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:
Allocation Max Available

A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

Example (Cont.)
 The content of the matrix Need is defined to be Max – Allocation

Need
A B C

P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example: P1 Request (1,0,2)

 Check that Request Available (that is, (1,0,2) (3,3,2) true
Allocation Need Available

A B C A B C A B C
P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?
 Can request for (0,2,0) by P0 be granted?

