
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 6: Real-Time
Scheduling

6.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time Scheduling Is Not Fair

Main goal of an RTOS scheduler is to meet task deadlines, instead of
throughput, latency and response time, etc.

If you have five homework assignments and only one is due in half an hour,
you work on that one first

Fairness does not help you meet deadlines

6.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

6.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

6.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Real-Time Scheduling Policies

Important Questions for real-time scheduling

What scheduler is guaranteed to meet all task deadlines for a given
workload?
Given a scheduler, how do we know that it will work for a given
workload?
Is there an “optimal” scheduler independent of workload?

6.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Timing parameters of a job Jj

Arrival time (aj) or release time (rj) is the time at which the job becomes
ready for execution
Computation (execution) time (Cj) is the time necessary to the processor for
executing the job without interruption.
Absolute deadline (dj) is the time at which the job should be completed.
Relative deadline (Dj) is the time length between the arrival time and the
absolute deadline.
Start time (sj) is the time at which the job starts its execution.
Finishing time (fj) is the time at which the job finishes its execution.
Response time (Rj) is the time length at which the job finishes its execution
after its arrival, which is fj - aj.

6.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Feasibility of Schedules and Schedulability

A schedule is feasible if all jobs can be completed according to a set
of specified constraints.

A set of jobs is schedulable if there exists a feasible schedule for the
set of jobs.

A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists (under any scheduling algorithm).

6.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Evaluating A Schedule
For a job Jj:
Lateness Lj: delay of job completion with respect to its deadline.

Lj = fj - dj

Tardiness Ej: the time that a job stays active after its deadline.

Ej = max{0, Lj}

Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed and
still meet its deadline.

Xj = dj - aj - Cj

6.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Metrics of Scheduling Algorithms (for Jobs)

Given a set J of n jobs, the common metrics are to minimize:
- Average response time:

- Makespan (total completion time):

- Total weighted response time:

- Maximum latency:

Number of late jobs: where miss(Jj) = 0 if fj <= dj, and
miss(Jj) = 1 otherwise.

6.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hard/Soft Real-Time Systems
Hard Real-Time Systems

- If any hard deadline is ever missed, then the system is incorrect
- The tardiness for any job must be 0
- Examples: Nuclear power plant control, flight control

Soft Real-Time Systems
- A soft deadline may occasionally be missed
- Various definitions for “occasionally”

- minimize the number of tardy jobs, minimize the maximum lateness, etc.
- Examples: Telephone switches, multimedia applications

We mostly consider hard real-time systems in this lecture.

6.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

An Example: Shortest-Job-First (SJF)

At any moment, the system executes the job with the shortest remaining
time among the jobs in the ready queue.

6.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

An Example: Earliest-Deadline-First (EDF)
At any moment, the system executes the job with the earliest absolute
deadline among the jobs in the ready queue.

6.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recurrent Task Models

When jobs (usually with the same computation requirement) are released
recurrently, they can be modeled by a recurrent task
Periodic Task ti:

- A job is released exactly and periodically by a period Ti

- A phase φi indicates when the first job is released
- A relative deadline Di for each job from task ti
- (φi, Ci , Ti, Di) is the specification of periodic task ti, where Ci is the worst-case

execution time.
Sporadic Task ti:

- Ti is the minimal time between any two consecutive job releases
- A relative deadline Di for each job from task ti
- (Ci, Ti, Di) is the specification of sporadic task ti , where Ci is the worst-case

execution time.
Aperiodic Task: Identical jobs released arbitrarily.

6.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Examples of Recurrent Task Models

6.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Relative Deadline <=> Period

For a task set, we say that the task set is with

implicit deadline when the relative deadline Di is equal to the period
Ti , i.e., Di = Ti, for every task ti,

constrained deadline when the relative deadline Di is no more than
the period Ti, i.e., Di <= Ti, for every task ti, or

arbitrary deadline when the relative deadline Di could be larger than
the period Ti for some task ti.

6.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Some Definitions for Periodic Tasks

The jobs of task ti are denoted Ji,1, Ji,2,
Synchronous system: Each task has a phase of 0.
Asynchronous system: Phases are arbitrary.
Hyperperiod: Least common multiple (LCM) of Ti.
Task utilization of task ti : ui = Ci / Ti.
System utilization: .

6.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Feasibility and Schedulability for Recurrent Tasks

A schedule is feasible if all the jobs of all tasks can be completed
according to a set of specified constraints.

A set of tasks is schedulable if there exists a feasible schedule for
the set of tasks.

A scheduling algorithm is optimal if it always produces a feasible
schedule when one exists (under any scheduling algorithm).

6.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulability Analysis

Schedulability for Static-Priority Scheduling
- Utilization-Based Analysis (Relative Deadline = Period)
- Demand-Based Analysis

Schedulability for Dynamic-Priority Scheduling

6.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Static-Priority Scheduling

Different jobs of a task are assigned the same priority.
- πi is the priority of task ti.
- HPi is the subset of tasks with higher priority than ti.
- Note: we will assume that no two tasks have the same priority.

We will implicitly index tasks in decreasing priority order, i.e., ti has
higher priority than tk if i < k.
Which strategy is better or the best?

- largest execution time first?
- shortest job first?
- least-utilization first?
- most importance first?
- least period first?

6.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Rate-Monotonic (RM) Scheduling

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily.

Example Schedule: t1 = (1, 6, 6), t2 = (2, 8, 8), t3 = (4, 12, 12). [(Ci, Ti,
Di)]

6.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadline-Monotonic (DM) Scheduling

Priority Definition: A task with a smaller relative deadline has higher
priority, in which ties are broken arbitrarily.

Example Schedule: t1 = (2, 8, 4), t2 = (1, 6, 6), t3 = (4, 12, 12). [(Ci, Ti,
Di)]

6.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimality (or not) of RM and DM

Example Schedule: t1 = (2, 4, 4), t2 = (5, 10, 10)

The above system is schedulable.
No static-priority scheme is optimal for scheduling periodic tasks:
However, a deadline will be missed, regardless of how we choose to
(statically) prioritize t1 and t2.

Corollary: Neither RM nor DM is optimal

6.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Optimality Among Static-Priority Algorithms

Theorem: A system of T independent, preemptable, synchronous
periodic tasks that have relative deadlines equal to their respective
periods can be feasibly scheduled on one processor according to the
RM algorithm whenever it can be feasibly scheduled according to any
static priority algorithm.

Exercise: Complete the proof.

Note: When Di <= Ti for all tasks, DM can be shown to be an optimal
static-priority algorithm using similar argument. Proof left as an
exercise.

6.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Liu and Layland Bound

Theorem: [Liu and Layland] A set of n independent, preemptable
periodic tasks with relative deadlines equal to their respective periods
can be scheduled on a processor according to the RM algorithm if its
total utilization U is at most n(21/n - 1). In other words, Ulub(RM, n) =
n(21/n - 1) >= 0.693.

6.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Utilization-Based Test for EDF Scheduling

Theorem: A task set T of independent, preemptable, periodic tasks
with relative deadlines equal to their periods can be feasibly
scheduled (under EDF) on one processor if and only if its total
utilization U is at most one.

6.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Relative Deadlines Less than Periods

Theorem: A task set T of independent, preemptable, periodic tasks
with relative deadlines equal to or less than their periods can be
feasibly scheduled (under EDF) on one processor if:

Note: This theorem only gives sufficient condition.

6.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Comparison between RM and EDF (Implicit
Deadlines)

RM
Low run-time overhead: O(1)
with priority sorting in advance
Optimal for static-priority
Schedulability test is NP-hard
(even if the relative deadline =
period)
Least upper bound: 0.693
In general, more preemption

EDF
• High run-time overhead: O(log

n) with balanced binary tree
• Optimal for dynamic-priority
• Schedulability test is easy

(when the relative deadline =
period)

• Least upper bound: 1
• In general, less preemption

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 6

