
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 Examples of IPC Systems
 Communication in Client-Server Systems

3.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Objectives

 To introduce the notion of a process -- a program in
execution, which forms the basis of all computation

 To describe the various features of processes, including
scheduling, creation and termination, and communication

 To explore interprocess communication using shared memory
and message passing

 To describe communication in client-server systems

3.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept

 An operating system executes a variety of programs:
 Batch system – jobs
 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably
 Process – a program in execution; process execution must

progress in sequential fashion
 Multiple parts

 The program code, also called text section
 Current activity including program counter, processor

registers
 Stack containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time

3.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),
process is active
 Program becomes process when executable file loaded into

memory
 Execution of program started via GUI mouse clicks, command

line entry of its name, etc
 One program can be several processes

 Consider multiple users executing the same program

3.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process in Memory

3.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process State

 As a process executes, it changes state
 new: The process is being created
 running: Instructions are being executed
 waiting: The process is waiting for some event to occur
 ready: The process is waiting to be assigned to a processor
 terminated: The process has finished execution

3.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Diagram of Process State

3.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Control Block (PCB)

Information associated with each process
(also called task control block)
 Process state – running, waiting, etc
 Program counter – location of

instruction to next execute
 CPU registers – contents of all process-

centric registers
 CPU scheduling information- priorities,

scheduling queue pointers
 Memory-management information –

memory allocated to the process
 Accounting information – CPU used,

clock time elapsed since start, time
limits

 I/O status information – I/O devices
allocated to process, list of open files

3.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

CPU Switch From Process to Process

3.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Threads

 So far, process has a single thread of execution
 Consider having multiple program counters per process

 Multiple locations can execute at once
 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program
counters in PCB

 See next chapter

3.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent; /* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files; /* list of open files */
struct mm_struct *mm; /* address space of this process */

3.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for
time sharing

 Process scheduler selects among available processes for
next execution on CPU

 Maintains scheduling queues of processes
 Job queue – set of all processes in the system
 Ready queue – set of all processes residing in main

memory, ready and waiting to execute
 Device queues – set of processes waiting for an I/O device
 Processes migrate among the various queues

3.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Ready Queue And Various I/O Device Queues

3.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Schedulers

 Short-term scheduler (or CPU scheduler) – selects which process should
be executed next and allocates CPU
 Sometimes the only scheduler in a system
 Short-term scheduler is invoked frequently (milliseconds)  (must be

fast)
 Long-term scheduler (or job scheduler) – selects which processes should

be brought into the ready queue
 Long-term scheduler is invoked infrequently (seconds, minutes) 

(may be slow)
 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:
 I/O-bound process – spends more time doing I/O than computations,

many short CPU bursts
 CPU-bound process – spends more time doing computations; few very

long CPU bursts
 Long-term scheduler strives for good process mix

3.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Addition of Medium Term Scheduling

 Medium-term scheduler can be added if degree of multiple
programming needs to decrease
 Remove process from memory, store on disk, bring back in

from disk to continue execution: swapping

3.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multitasking in Mobile Systems

 Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

 Due to screen real estate, user interface limits iOS provides for a
 Single foreground process- controlled via user interface
 Multiple background processes– in memory, running, but not

on the display, and with limits
 Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback
 Android runs foreground and background, with fewer limits

 Background process uses a service to perform tasks
 Service can keep running even if background process is

suspended
 Service has no user interface, small memory use

3.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process represented in the PCB
 Context-switch time is overhead; the system does no useful

work while switching
 The more complex the OS and the PCB  the longer the

context switch
 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU
 multiple contexts loaded at once

3.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Operations on Processes

 System must provide mechanisms for:
 process creation,
 process termination,
 and so on as detailed next

3.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

3.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

A Tree of Processes in Linux

init
pid = 1

sshd
pid = 3028

login
pid = 8415

kthreadd
pid = 2

sshd
pid = 3610

pdflush
pid = 200

khelper
pid = 6

tcsch
pid = 4005

emacs
pid = 9204

bash
pid = 8416

ps
pid = 9298

After system booted

Performing tasks on
behalf of the kernel

Managing clients that
connect to the
system by using
ssh

Managing clients that directly
log onto the system.

3.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Creation (Cont.)

 Address space
 Child duplicate of parent (has the same program as the

parent)
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process. The new process

consists of a copy of the address space of the original
process.

 exec() system call used after a fork() to replace the
process’ memory space with a new program

move itself off the ready queue until the termination of the child

3.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Representation of Process Scheduling

 Queueing diagram represents queues, resources, flows

3.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

C Program Forking Separate Process

The only difference is
that the value of pid for
the child process is
zero, while that for the
parent is the actual pid
of the child process.

3.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.
 Returns status data from child to parent (via wait())

 Process’ resources are deallocated by operating system
 Parent may terminate the execution of children processes using

the abort() system call. Some reasons for doing so:

 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Process Termination

 Some operating systems do not allow child to exist if its parent has
terminated. If a process terminates, then all its children must also
be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie
 Once the parent calls wait(), the process identifier of the

zombie process and its entry in the process table are released.
 If parent terminated without invoking wait , process is an orphan

 Assigning the init process as the new parent, periodically
invokes wait()

3.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication

 Processes within a system may be independent or cooperating
 Cooperating process can affect or be affected by other processes,

including sharing data
 Reasons for cooperating processes:

 Information sharing (shared files)
 Computation speedup (parallel subtasks)
 Modularity (system function divided into separate processes)
 Convenience

 Cooperating processes need interprocess communication (IPC)
 Two models of IPC

 Shared memory
 Message passing

3.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications Models

(a) Message passing. (b) shared memory.

3.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that wish to
communicate
 Typically, a shared-memory region resides in the address space of the

process creating the shared-memory segment. Other processes that wish to
communicate using this shared-memory segment must attach it to their
address space.

 The communication is under the control of the users processes not the
operating system.

 Major issues is to provide mechanism that will allow the user processes
to synchronize their actions when they access shared memory.

 Synchronization is discussed in great details in Chapter 5.

3.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the buffer

 The consumer may have to wait for new items, but the producer
can always produce new items.

 bounded-buffer assumes that there is a fixed buffer size
 The consumer must wait if the buffer is empty, and the producer

must wait if the buffer is full.

3.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

3.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

item next_produced;
while (true) {

/* produce an item in next produced */
while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

}

3.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

item next_consumed;

while (true) {
while (in == out)

; /* do nothing */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Solution is correct, but can only use BUFFER_SIZE-1
elements. How to design a solution in which BUFFER
SIZE items can be in the buffer at the same time?

3.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message)
 receive(message)

 Particularly useful in a distributed environment
 The message size is either fixed or variable

3.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of

communicating processes?
 What is the capacity of a link?
 Is the size of a message that the link can accommodate fixed or

variable?
 Is a link unidirectional or bi-directional?

3.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect
 Synchronous or asynchronous
 Automatic or explicit buffering

3.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Properties of communication link
 Links are established automatically
 A link is associated with exactly one pair of communicating

processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional

3.39 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Messages are directed and received from mailboxes (also referred
to as ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox

 Properties of communication link
 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.40 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

3.41 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.

3.42 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization

 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is
received

 Blocking receive -- the receiver is blocked until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continue
 Non-blocking receive -- the receiver receives:

 A valid message, or
 Null message

 Different combinations possible

3.43 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Synchronization (Cont.)

 Producer-consumer becomes trivial

message next_produced;

while (true) {
/* produce an item in next produced */

send(next_produced);

}

message next_consumed;
while (true) {

receive(next_consumed);

/* consume the item in next consumed */
}

3.44 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Buffering

 Queue of messages attached to the link.
 implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.45 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls
 Pipes
 Remote Method Invocation (Java)

3.46 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard
services

 Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

3.47 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket Communication

3.48 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming

Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. Client reads a line of characters (data) from its keyboard and sends

the data to the server.
2. The server receives the data and converts characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its

screen.

3.49 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data
 sender explicitly attaches IP destination address and port # to

each packet
 rcvr extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
 UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

3.50 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

3.51 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET,

socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input

Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

3.52 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print “The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

3.53 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Socket programming with TCP

client must contact server
 server process must first be

running
 server must have created

socket (door) that welcomes
client’s contact

client contacts server by:
 Creating TCP socket, specifying

IP address, port number of
server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client, server
TCP creates new socket for
server process to communicate
with that particular client
 allows server to talk with

multiple clients
 source port numbers used to

distinguish clients (more in
Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

3.54 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

3.55 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print ‘From Server:’, modifiedSentence
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

3.56 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

End of Chapter 3

