Paper Reading Assignment II

(Due on October 1st)

- Tramarin, Federico, Aloysius K. Mok, and Song Han. "Real-Time and Reliable Industrial Control Over Wireless LANs: Algorithms, Protocols, and Future Directions." Proceedings of the IEEE 107, no. 6 (2019): 1027-1052.
- https://ieeexplore.ieee.org/abstract/document/8718787
- Bianchi, Giuseppe. "Performance analysis of the IEEE 802.11 distributed coordination function." IEEE Journal on selected areas in communications 18, no. 3 (2000): 535-547.
- http://ieeexplore.ieee.org/document/840210/?arnumber=8402 10&tag=1

Introduction to IEEE 802.11

Characteristics of wireless LANs

- Advantages
 - very flexible within the reception area
 - Ad-hoc networks without previous planning possible
 - (almost) no wiring difficulties
 - more robust against disasters
 - e.g., earthquakes, fire or users pulling a plug...
- Disadvantages
 - typically low bandwidth compared to wired networks due to shared medium
 - Less reliable

Design Goals for Wireless LANs

- global, seamless operation
- low power for battery use
- no special licenses needed to use the LAN
- robust transmission technology
- easy to use for everyone, simple management
- security, privacy, safety
- transparent to applications and higher layer protocols
- location aware if necessary

Infrastructure vs. ad-hoc networks

802.11: Infrastructure

•Station (STA)

 terminal with access mechanisms to the wireless medium and radio contact to the access point

Access Point

 station integrated into the wireless LAN and the distribution system

•Basic Service Set (BSS)

 group of stations using the same AP

Portal

- bridge to other (wired) networks

•Distribution System

 interconnection network to form one logical network (ESS: Extended Service Set) based on several BSS

802.11: Ad hoc mode

- Direct communication within a limited range
 - Station (STA): terminal with access mechanisms to the wireless medium
 - Independent Basic
 Service Set (IBSS):
 group of stations using
 the same network

Outline

- Introduction to MAC
- Introduction to IEEE 802.11
- 802.11 Physical layer
- 802.11 MAC layer
- 802.11 Management

WLAN: IEEE 802.11b

Data rate

- 1, 2, 5.5, 11 Mbit/s, depending on SNR
- User data rate max. approx.
 6 Mbit/s
- Transmission range
 - 300m outdoor, 30m indoor
 - Max. data rate ~10m indoor
- Frequency
 - Free 2.4 GHz ISM-band
- Availability
 - Many products and vendors

- Quality of Service
 - Best effort, no guarantees (unless polling is used, limited support in products)
 - Pros
 - Many installed systems and vendors
 - Available worldwide
 - Free ISM-band
 - Cons
 - Heavy interference on ISMband
 - No service guarantees
 - Relatively low data rate

WLAN: IEEE 802.11a

- Data rate
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR
 - User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
 - 6, 12, 24 Mbit/s mandatory
- Transmission range
 - 100m outdoor, 10m indoor
 - E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
 - Free 5.15-5.25, 5.25-5.35,
 5.725-5.825 GHz ISM-band

- Availability
 - Some products, some vendors
- Quality of Service
 - Best effort, no guarantees (same as all 802.11 products)
- Pros
 - Fits into 802.x standards
 - Free ISM-band
 - Available, simple system
 - Uses less crowded 5 GHz band
 - Higher data rates
- Cons
 - Shorter range

Protoc	col	PHY Name	Max. Rate [Mbit/s]	Channel bandwidth [MHz]	Band [GHz]	Name
802.11	1997	DSSS	2	22	2.4	(Wi-Fi 1)
802.11b	1999	HR/DSSS	11	22	2.4	(Wi-Fi 2)
802.11a	1999	OFDM	54	20	5	
802.11g	2003	ERP-OFDM	54	20	2.4	(Wi–Fi 3)
802.11n	2009	HT-MIMO	600	20/40	2.4/5	Wi–Fi 4
802.11ac	2013	VHT-MIMO	3466.8	20/40/80/160	5	Wi–Fi 5
802.11ax	2019	HE-OFDM	10530	20/40 @2.4GHz 20/40/80/160 @5GHz	2.4/5	Wi–Fi 6

 Table 1
 Roadmap of the Major IEEE 802.11
 Standard Developments

Other IEEE 802.11 developments

- 802.11i: Enhanced Security Mechanisms
 - Enhance the current 802.11 MAC to provide improvements in security.
 - TKIP enhances the insecure WEP, but remains compatible to older WEP systems
 - AES provides a secure encryption method and is based on new hardware
- 802.11j: Extensions for operations in Japan
 - Changes of 802.11a for operation at 5GHz in Japan using only half the channel width at larger range
- 802.11k: Methods for channel measurements
 - Devices and access points should be able to estimate channel quality in order to be able to choose a better access point of channel
- 802.11m: Updates of the 802.11 standards
- 802.11n: Higher data rates 600Mbit/s
 - Changes of PHY and MAC with the goal of 100Mbit/s at MAC SAP
 - MIMO antennas (Multiple Input Multiple Output), up to 600Mbit/s are currently feasible
 - However, still a large overhead due to protocol headers and inefficient mechanisms
- 802.11p: Inter car communications
 - Communication between cars/road side and cars/cars
 - Planned for relative speeds of min. 200km/h and ranges over 1000m
 - Usage of 5.850-5.925GHz band in North America

Other IEEE 802.11 developments

- 802.11c: Bridge Support
 - Definition of MAC procedures to support bridges as extension to 802.1D
- 802.11d: Regulatory Domain Update
 - Support of additional regulations related to channel selection, hopping sequences
- 802.11e: MAC Enhancements QoS
 - Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol
 - Definition of a data flow ("connection") with parameters like rate, burst, period...
 - Additional energy saving mechanisms and more efficient retransmission
- 802.11f: Inter-Access Point Protocol
 - Establish an Inter-Access Point Protocol for data exchange via the distribution system
 - Currently unclear to which extend manufacturers will follow this suggestion
- 802.11h: Spectrum Managed 802.11a
 - Extension for operation of 802.11a in Europe by mechanisms like channel measurement for dynamic channel selection (DFS, Dynamic Frequency Selection) and power control (TPC, Transmit Power Control)

Other IEEE 802.11 developments

• 802.11r: Faster Handover between BSS

- Secure, fast handover of a station from one AP to another within an ESS
- Current mechanisms (even newer standards like 802.11i) plus incompatible devices from different vendors are massive problems for the use of, e.g., VoIP in WLANs
- Handover should be feasible within 50ms in order to support multimedia applications efficiently
- 802.11s: Mesh Networking
 - Design of a self-configuring Wireless Distribution System (WDS) based on 802.11
 - Support of point-to-point and broadcast communication across several hops
- 802.11t: Performance evaluation of 802.11 networks
 - Standardization of performance measurement schemes
- 802.11u: Interworking with additional external networks
- 802.11v: Network management
 - Extensions of current management functions, channel measurements
 - Definition of a unified interface
- 802.11w: Securing of network control
 - Classical standards like 802.11, but also 802.11i protect only data frames, not the control frames. Thus, this standard should extend 802.11i in a way that, e.g., no control frames can be forged.
- Note: Not all "standards" will end in products, many ideas get stuck at working group
- Info: www.ieee802.org/11/, 802wirelessworld.com, standards.ieee.org/getieee802/

Outline

- Introduction to MAC
- Introduction to IEEE 802.11
- 802.11 Physical layer
- 802.11 MAC layer
- 802.11 Management

IEEE 802.11 Wireless MAC

- Distributed and centralized MAC components
 - Centralized Point Coordination Function (PCF)
 - In infrastructure mode
 - Contention-free access protocol with a controller (AP) called a point coordinator within the BSS
 - Distributed Distributed Coordination Function (DCF)
 - In ad-hoc mode
 - DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol (distributed contention based protocol)
- Both the DCF and PCF can operate concurrently within the same BSS to provide alternative contention and contention-free periods

PCF in 802.11 MAC

- Its objective is to provide QoS guarantees
 - E.g. bound the max access delay, bound the minimum guaranteed txmt rate
- Centralized MAC infrastructure mode
- Key idea
 - The AP polls the nodes in its BSS
 - A PC (point coordinator) at the AP splits the access time into super frame periods
 - A super frame period consists of alternating contention free periods (CFPs) and contention periods (CPs)
 - The PC then determines which station transmits at any point in time

DCF in 802.11 MAC

- The AP doesn't control the medium access
- Use collision avoidance techniques, in conjunction with a (physical or virtual) carrier sense mechanism
- Carrier sense:
 - When a node wishes to transmit a packet, it first waits until the channel is idle
- Collision avoidance:
 - Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit
 - Nodes hearing RTS or CTS stay silent for the duration of the corresponding transmission

DCF Illustration

- Before a node transmits, it listens for activity on the network
- If medium is busy, node waits to transmit
- After medium is clear, don't immediately start transmitting...
- Otherwise all nodes would start talking at the same time!
- Instead, delay a random amount of time (*random backoff*)

802.11 MAC Layer

- Distributed and centralized access methods
 - DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
 - PCF (optional)
 - access point polls terminals according to a list

How to prioritize frames?

802.11 - MAC layer II

- Priorities
 - defined through different inter frame spaces
 - no guarantee, hard priorities
 - SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, Polling response
 - PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
 - DIFS (DCF, Distributed Coordination Function IFS)
 - lowest priority, for asynchronous data service

IEEE 802.11 DCF

- DCF is CSMA/CA protocol
 - Why not CSMA/CD?
- DCF suitable for multi-hop ad hoc networking
- Optionally uses RTS-CTS exchange to avoid hidden terminal problem
 - Any node overhearing a CTS cannot transmit for the duration of the transfer
- Uses ACK to provide reliability

CSMA/CA

- Carrier sense
 - Nodes stay silent when carrier sensed (physical/virtual)
 - Physical carrier sense
 - Carrier sense threshold
 - Virtual carrier sense using Network Allocation
 Vector (NAV)
 - NAV is updated based on overheard RTS/CTS/DATA/ACK packets

- B can communicate with both A and C
- A and C cannot hear each other
- Problem
 - When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
 - If C transmits, collision will occur at node B
- Solution
 - Hidden sender C needs to defer

- When A wants to send a packet to B, A first sends a Request-to-Send (RTS) to B
- On receiving RTS, B responds by sending Clear-to-Send (CTS), provided that A is able to receive the packet
- When C overhears a CTS, it keeps quiet for the duration of the transfer
 - Transfer duration is included in both RTS and CTS

NAV = remaining duration to keep quiet

•DATA packet follows CTS. Successful data reception acknowledged using ACK.

Why do we need virtual carrier sense?

Reliability

- Wireless links are prone to errors. High packet loss rate detrimental to transportlayer performance.
- Mechanisms needed to reduce packet loss rate experienced by upper layers

A Simple Solution to Improve Reliability

- When B receives a data packet from A, B sends an Acknowledgement (ACK) to A.
- If node A fails to receive an ACK, it will retransmit the packet

Can RTS/CTS completely eliminate hidden terminals?

Outline

- Introduction to MAC layer
- Introduction to IEEE 802.11
- 802.11 Physical layer
- 802.11 MAC layer
- 802.11 Management

Backoff Interval

- Collision avoidance
 - Backoff intervals used to reduce collision probability
- When transmitting a packet, choose a backoff interval in the range [0, CW]
 - CW is contention window
- Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
- Transmit when backoff interval reaches 0

DCF Example

cw = 31

B1 and B2 are backoff intervals at nodes 1 and 2

Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead
- Important to choose CW appropriately
 - large CW \rightarrow large overhead
 - small CW
 may lead to many collisions (when two nodes count down to 0 simultaneously)
- How to choose an appropriate CW?

Backoff Interval (Cont.)

- Since the number of nodes attempting to transmit simultaneously may change with time, some mechanism to manage contention is needed
- IEEE 802.11 DCF: contention window CW is chosen dynamically depending on collision occurrence

Binary Exponential Backoff in DCF

- When a node fails to receive CTS in response to its RTS, it increases the contention window
 - CW is doubled (up to an upper bound)
 - More collisions

 Ionger waiting time to reduce collision
- When a node successfully completes a data transfer, it restores CW to CW_{min}

MILD Algorithm in MACAW

- MACAW uses exponential increase linear decrease to update CW
 - When a node successfully completes a transfer, reduces CW by 1
 - In 802.11, CW is restored to CWmin
 - In 802.11, CW reduces much faster than it increases
- MACAW can avoid wild oscillations of CW when many nodes contend for the channel

802.11 Overhead

- Overhead:
 - DIFS
 - Random backoff
 - ACK/SIFS
 - Optional RTS/CTS handshake before transmission of data packet (often disabled due to its overhead)
 - Header overhead
- 802.11 has room for improvement. How?

Fragmentation

DFWMAC-PCF

Figure 62—Example of PCF frame transfer

802.11 - Frame format

- Types
 - control frames, management frames, data frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs
- Addresses
 - Sender, receiver, BSS identifier
- Miscellaneous
 - sending time, checksum, frame control, data

byte	s 2	2	6		6		6	2		6	0-231	2	4
	Frame	Duratio	on/ Addr	ess	Addre	ss Ad	dress	Sequen	ce Ad	dress	Data		CRC
	Control	ID	1		2		3	Contro	bl	4	Dala		CINC
bits	2	2	4	1	1	1	11	1	1	1	1		
	Protocol	Type	Subtype	То	From	More	Rotry	Power	More		Order		
	version	Type	Custype	DS	DS	Frag	ag Keny	Mgmt	Data		Cidei		

MAC address format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	ТА	DA	SA

DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address

http://www.studioreti.it/slide/802-11-Frame_E_C.pdf

Special Frames: ACK, RTS, CTS

 Acknowledgement
 Ack
 Frame Control
 Duration
 Receiver Address
 CRC

Clear To Send

bytes264CTSFrame
ControlDurationReceiver
AddressCRC

Outline

- Introduction to MAC
- Introduction to IEEE 802.11
- 802.11 Physical layer
- 802.11 MAC layer
- 802.11 Management

802.11 - MAC management

- Association/Reassociation
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network
- Synchronization
 - timing
- Power management
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements
- MIB Management Information Base
 - managing, read, write

Association and Reassociation

- Integration into a LAN
- Scanning: find a network to connect
- Roaming: change networks by changing access points

Scanning

- Goal: Find a network to connect
- Passive scanning
 - Not require transmission
 - Move to each channel, and listen for Beacon frames
- Active scanning
 - Require transmission
 - Move to each channel, and send Probe Request frames to solicit Probe Responses from a network

Association in 802.11

802.11 - Roaming

- No or bad connection? Then perform:
- Scanning
 - scan the environment, i.e., listen to the medium for beacon signals or send probes to the medium and wait for an answer
- Reassociation Request
 - station sends a request to one or several AP(s)
- Reassociation Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
- AP accepts Reassociation Request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources

Reassociation in 802.11

Synchronization using a Beacon (infrastructure)

Synchronization using a Beacon (ad-hoc)

Power management

- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated no central AP

Power saving with wake-up patterns (infrastructure)

Power saving with wake-up patterns (ad-hoc)

