RT-WiFi: High-Speed Real-Time Communication Platform for Cyber-Physical Systems

RT-WiFi Design Goals

- 1. Real-Time Data Delivery and High Sampling Rate
 - Aim to provide at least 1 kHz sampling rate
 - minimum requirement for many mechanical control systems
- 2. Flexible Configuration
 - Configurable parameters: sampling rate, predictability of real-time data delivery, reliability, co-existence with regular WiFi networks
- 3. Transparent System Design
 - Use commercial-off-the-shelf network card
 - Transparent to upper layer protocols

Overview of a Control System using RT-WiFi Network

- Coordinate channel access among the stations
- Link: Broadcast link, transmit link, receive link, shared link
- Superframe:

Enabling Co-existence with Regular WiFi

- 1. Assume bounded length for regular WiFi data frames to ensure bounded latency
 - Limit maximum transmission unit to at most some upper bound
 - Limit lowest data rate to at least some lower bound
- 2. For RT-WiFi:
 - Enable carrier sense
 - Use shorter interframe space (IFS)

8

Increasing Reliability in RT-WiFi transmission

- Retransmission
 - In-slot retransmission
 - Out-of-slot retransmission

RT-WiFi Testbed setup

Setup:

Interference free environment vs. office environment

Slot 0	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6	Slot 7
AP Broadcast	Shared	STA1 ♥ AP	AP ↓ STA1	STA2 ♥ AP	AP ♥ STA2	STA3 ♥ AP	AP ↓ STA3

Timeslot size: 500 µs

Results of RT-WiFi baseline (TDMA only) in Interference Free Environment

Link	Max Latency(µs)		Mean Latency(µs)		Latency stdev. (µs)		Loss Ratio	
	RT-WiFi	Wi-Fi	RT-WiFi	Wi-Fi	RT-WiFi	Wi-Fi	RT-WiFi	Wi-Fi
STA1->AP	535	16448	173	191	4.88	231.60	0.19%	0%
STA2->AP	529	13387	172	181	2.52	214.15	0.16%	0%
STA3->AP	525	13589	174	202	3.01	236.75	0.21%	0%
AP->STA1	827	16472	184	250	5.29	342.24	0.06%	0%
AP->STA2	544	17465	187	298	3.98	360.66	0.04%	0%
AP->STA3	1055	17049	188	248	4.87	325 50	0.01%	0%
	16-32x				47-90x			

Results of RT-WiFi baseline (TDMA only) in Office Environment

Link	Max Latency(µs)		Mean Latency(µs)		Latency stdev. (µs)		Loss Ratio	
	RT-WiFi	Wi-Fi	RT-WiFi	Wi Fi	RT-WiFi	W1-Ei	RT-WiFi	Wi-Fi
STA1->AP	3865	100078	176	401	25.86	1491.69	8.64%	0%
STA2->AP	4193	81499	171	348	27.62	1000.60	9.97%	0%
STA3->AP	3861	75298	174	429	25.16	1221.72	7.55%	0%
AP->STA1	1197	78089	184	788	16.86	2861.42	9.52%	0%
AP->STA2	1342	78923	189	790	15.19	2806.56	8.09%	0%
AP->STA3	2186	77860	1,89	799	19.03	2855.89	9.31%	0%
2.0-4.3x 36-184x								

Flexible Channel Access Controller Experiment Setup

• Network A:

- Regular WiFi network
- 10 Mbps UDP traffic generated by iperf

• Network B:

- UDP program to emulate control applications
- Compare:
 - Regular WiFi
 - RT-WiFi baseline
 - RT-WiFi with co-existence enabled
 - RT-WiFi with co-existence enabled and one in-slot retransmission enabled

• Metrics:

MAC to MAC layer latency Packet loss ratio

Flexible Channel Access Controller Experiment Results

	Max Latency (µs)	Mean Latency (µs)	Latency Stdev. (µs)	Loss Ratio
Regular WiFi	62629	580	1679.04	0%
RT-WiFi baseline	953	183	27.75	50.21%
RT-WiFi co-ex	2507	220	149.27	10.92%
RT-WiFi co-ex + retry	2831	254	166.37	4.96%

Data Link Layer Schedule Assignment for Minimizing Communication Jitter

- TDMA communication scheduler design for wireless CPS applications.
 - Meet diverse application and system requirements
 - Application performance requirements
 - Hardware capability
 - Minimize communication jitters
 - Easier controller design
 - Better application performance

rehabilitation assistive device ~1000Hz

RT-WiFi Communication Task Model

- Model communication tasks in an RT-WiFi network as a periodic task set $T = \{T_i\}_{i=1}^n$
- Each task T_i is defined as $T_i = (P_i^{min}, P_i^{max}, C_i)$
 - P_i^{min} : minimum sampling period supported by the task : determined by hardware and software capability
 - P_i^{max} : maximum sampling period required by the task: determined by controller requirement
 - $-C_i$: number of time slots for data transmission

 $-P_i^{min}$, P_i^{max} and C_i are integers, representing the number of time slots

- Scheduler allows preemption only at time slot boundaries.

Static Link Schedule Assignment

- Each task T_i consists of an infinite sequence of jobs. Each job is a fixed number (C_i) of data fragments to be transmitted, with each fragment taking one time slot to transmit.
- Jitter is defined as the variation of jobs' inter-completion times.
- Given a communication task set $T = \{T_i\}_{i=1}^n$ with $T_i = (P_i^{min}, P_i^{max}, C_i)$, the **Jitter-Free Scheduling (JFS) Problem** is to determine the period P_i and phasing $\{\phi_{i,1}, \dots, \phi_{i,C_i}\}$ for each task T_i , so that:
 - 1) $P_i^{min} \leq P_i \leq P_i^{max}$
 - 2) The *j*-th fragment of task T_i is scheduled at $(\phi_{i,j} + P_i \cdot k)$ -th time slot, where k = 0, 1, 2, ...
 - 3) only one fragment is scheduled at a time slot
 - 4) The network utilization $U = \sum_{i=1}^{n} \frac{C_i}{P_i}$ is minimized
- JFS problem is NP-hard

Harmonic Chain Based Jitter-Free (HCJF) Scheduler

• Find a sufficient condition that yields a pseudo-polynomial time solution to the JFS problem.

• Stage 1: Period Selection

- Select period $P_i \in [P_i^{min}, P_i^{max}]$ for each task, so that all the $\{P_i\}_{i=1}^n$ form a harmonic chain and the network utilization $U = \sum_{i=1}^n \frac{C_i}{P_i}$ is minimized.

[A set S of positive integers forms a **harmonic chain** if and only if $\forall x, y \in S, (x|y) \lor (y|x)$.]

• Stage 2: Phasing Assignment

Assign phasing using a greedy algorithm

If $p_{i,j}$ can form a harmonic chain with some admissible periods from T_1 to T_{i-1} , then:

- $u_{i,i}$ stores the minimum utilization of these harmonic chain
- $prev_{i,j}$ is the backpointer to the previous node in the harmonic chain with minimum utilization

Initialization:

$$u_{1,j} = \frac{c_i}{p_{1,j}} \quad 1 \le j \le P_1^{max} - P_1^{min} + 1$$

$$prev_{1,j} = 1$$

21

<u>Recursion</u>: Let set S = { $x \mid (p_{i-1,x} \mid p_{i,j}) \land (prev_{i-1,x} \neq null)$ }

If $S \neq \emptyset$: $u_{i,j} = \frac{C_i}{P_{i,j}} + \min_{y \in S} u_{i-1,y}$ $prev_{i,j} = \operatorname{argmin}_{y \in S} u_{i-1,y}$ If $S = \emptyset$: $u_{i,j} = +\infty$ $prev_{i,j} = \operatorname{null}$

<u>Recursion</u>: Let set S = { $x \mid (p_{i-1,x} \mid p_{i,j}) \land (prev_{i-1,x} \neq null)$ }

If $S \neq \emptyset$: $u_{i,j} = \frac{C_i}{P_{i,j}} + \min_{y \in S} u_{i-1,y}$ $prev_{i,j} = \operatorname{argmin}_{y \in S} u_{i-1,y}$ If $S = \emptyset$: $u_{i,j} = +\infty$ $prev_{i,j} = \operatorname{null}$

24

Termination:

 $U = \min_{j} u_{n,j}$ $1 \le j \le m_n$ $q = \operatorname{argmin}_j u_{n,j}$

If $U = +\infty$: Harmonic chain not found

If $U \neq +\infty$: The optimal network utilization is $U, P_n = p_{n,q}$, then follow the backpointers *prev* to construct the full period sequence $P_{n-1}, P_{n-2}, \dots P_1$ ²⁵

Phasing Assignment in Static Network

- Create a superframe with size P_n
- Assign phasing from T_1 to T_n in sequence
- Assign the first unallocated phasing in the schedule to a fragment of a task
- The task set is schedulable if the network utilization *U* is less than or equal to 1.

Dynamic Network Scheduling

- Devices may join and leave the network frequently
- No prior knowledge on future requests
- Existing schedule may need to be adjusted to admit new tasks

Example:

Dynamic Network Scheduling

- Devices may join and leave the network frequently
- No prior knowledge on future requests
- Existing schedule may need to be adjusted to admit new tasks
- Adjusting an existing schedule will cause:
 - network configuration overhead
 - control overhead to adjust sensor/actuator
- An efficient on-line scheduling algorithm to minimize schedule adjustment overhead is needed.

S-tree Node Status

Assignment Policy:

To add a task with period P_i : start from the root, follow a path with supportedperiod $\leq P_i$ until we find a free node with period P_i

When more than one node can support the new task, select the node whose supported-period is closest to P_i .

Replacement Policy:

If only semi-occupied nodes are available for new task, the semi-occupied node with least number of tasks will be replaced.

Replacement Policy:

If only semi-occupied nodes are available for new task, the semi-occupied node with least number of tasks will be replaced.

Replacement Policy:

If only semi-occupied nodes are available for new task, the semi-occupied node with least number of tasks will be replaced.

Adjustment Policy:

When adjusting the schedule of a task, we assign a node that has the closest phasing to its original phasing.

Adjustment Policy:

When adjusting the schedule of a task, we assign a node that has the closest phasing to its original phasing.

HCJF Scheduler Performance Evaluation - Network Performance

- Compare with:
 - Earliest Deadline First scheduler (EDF)
 - Rate Monotonic scheduler (RM)
 - Contention-Free periodic message scheduler (CF)
- Simulation Setup
 - Time slot size: 200 µs
 - Randomly generate 500 join/leave requests
 - P_{min}: [2, 20] uniformly distributed (simulating 250Hz to 2500Hz max. supported sampling rate)
 - P_{max}: [10, 600] uniformly distributed (simulating 8.33Hz to 500Hz min. required sampling rate)
 - Number of fragments: [1,3] Poisson distribution with $\lambda = 1$
 - 100 runs for each simulation

HCJF Scheduler Performance Evaluation - Network Performance (Cont.)

